Lời giải:
$A=1+\frac{1}{x}$
Với $x\geq 2$ thì $A$ không tồn tại min bạn nhé. Bạn xem lại đề.
Lời giải:
$A=1+\frac{1}{x}$
Với $x\geq 2$ thì $A$ không tồn tại min bạn nhé. Bạn xem lại đề.
Bài 1: Rút gọn:
a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) với x>1
b) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)với x>1
c) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\) với x>1
d) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)với x ≠ 4, x ≠ 16,x >0
Mng giúp mk nha
Rút gọn:
1) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
2)\(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
3) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
4) \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
Mng giúp e vs ạ, cần gấp :<
Chứng minh đẳng thức sau :
a. \(\left[\dfrac{1}{a-1}-\dfrac{2a}{\left(a^2+1\right)\left(a-1\right)}\right]:\dfrac{a^2+a+1}{a^2+1}=\dfrac{a-1}{a^2+a+11}\) VỚI a ≠ 1
b. \(\left(\dfrac{1-x^3}{1-x}-x\right):\dfrac{1+x}{1-x-x^2+x^3}=\left(1-x^2\right)\left(1+x^2\right)\)
Chứng minh đẳng thức
a. \(\left[\dfrac{2}{3x}-\dfrac{2}{x+1}1.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}=\dfrac{2x}{x-1}\)
b. \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$
Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$
Thật vậy, ta có :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)
$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$
Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$
Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.
a)A=\(\dfrac{1}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>\(\dfrac{1}{2}\)
b)A=\(\dfrac{\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}\)+\(\dfrac{\sqrt{x+2\sqrt{x-1}}}{\sqrt{x-1+1}}\) với x>2
c)\(\dfrac{a+b}{b^2}\)\(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) với a+b>0; b≠0
d)A=\(\left(\sqrt{\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
e)A=\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}}\) với x≠1; y≠1; y>o
f)A=\(\sqrt{\dfrac{m}{1-2x+x^2}}\)\(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0; x≠4
g)A=\(\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\)\(\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\) với x>0; x≠4
h)\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)\(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
Cho \(A=\left(x-x^2-1\right):\sqrt{\left(x^2+\frac{1}{x^2}\right)^2+2\left(x+\frac{1}{x}\right)^2-3}\)
a. Rút gọn A
b. Tìm x/ Amin
a : \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)với a ≥ 0 x ≠ 4
b : \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
c : \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
d : \(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(N=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a+1}}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn :
So sánh A với 2 , A=\(\left[\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right]:\dfrac{\sqrt{x}-1}{2}\)