a) \(n^3-4n=n^3-n-3n=\left(n-1\right)n\left(n+1\right)-3n\)
luôn chia hết cho 3 với mọi n
=> ĐPCM >>>>
b) \(pt\Leftrightarrow2\left(x+5\right)^2=27-3y^2\) (1)
Từ (1) => vp chẵn => y lẻ
Vì 2\(\left(x+5\right)^2\ge0\) với mọi x => \(27-3y^2\ge0\Leftrightarrow3y^2\le27\Leftrightarrow y^2\le9\Leftrightarrow-3\le y\le3\)
Vì y lẻ và y thuộc Z => y thuộc ( -3 ; -1 ; 1 ; 3 )
(+) với y = -3 ; 3 => \(2\left(x+5\right)^2=27-3\cdot9=0\)
<=> x = -5
(+) với y = +-1 => \(2\left(x+5\right)^2=27-3=24\)
<=> (x+5)^2 = 12 ( loại do x thuộc Z )
Vậy phương trình (1) cớ hai nghiệm nguyên là ( -3 ; - 5 ) và ( 3 ; 5 )