Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
kirito

a)cho a+b+c=2015. và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)tính A=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

b) cho \(\frac{a}{b}=\frac{c}{d}\). CMR \(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2c^2-3cd+3d^2}{2c^2+3cd}\)

giúp mình với mình tick cho

ctk_new
20 tháng 9 2019 lúc 20:37

a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)

\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)

\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)

ctk_new
20 tháng 9 2019 lúc 20:42

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Thay vào rồi c/m nhé

Xyz OLM
20 tháng 9 2019 lúc 20:47

a)  Từ đẳng thức : \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(\Rightarrow A+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(\Rightarrow A+3=\left(a+b+c\right).\frac{1}{b+c}+\left(a+b+c\right).\frac{1}{a+c}+\left(a+b+c\right).\frac{1}{a+b}\)

\(\Rightarrow A+3=\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow A+3=2015.\frac{1}{5}\)

\(\Rightarrow A+3=403\)

\(\Rightarrow A=400\)

Vậy A = 400

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2\left(bk\right)^2-3b^2k+5b^2}{2\left(bk\right)^2+3b^2k}=\frac{2k^2b^2-3b^2k+5b^2}{2b^2k^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2k^2+3k\right)}\)

\(=\frac{2k^2-3k+5}{2k^2+3k}\left(1\right)\);

\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2\left(dk\right)^2-3d^2k+5d^2}{2\left(dk\right)^2+3d^2k}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2k^2+3d^2k}=\frac{d^2.\left(2k^2-3k+5\right)}{d^2\left(2k^2+3k\right)}\)

\(=\frac{2k^2-3k+5}{2k^2+3k}\left(2\right)\)

Từ (1) và (2) => \(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2c^2-3cd+5d^2}{2c^2+3cd}\)(đpcm)


Các câu hỏi tương tự
Hà My Trần
Xem chi tiết
Nguyễn Thị Cẩm Ly
Xem chi tiết
๛Ňɠũ Vị Čáէツ
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Trần Tích Thường
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Pé Moon
Xem chi tiết
Hoàng Trịnh MInh Vi
Xem chi tiết
Trần Xuân Mai
Xem chi tiết