Bài toán : abcd +abc+ ab+a = 5135
Có nhiều cách giả bài toán này : thử chọn , suy luận …
Sau đây là 1 cách giải sử dung phép chia có dư:
abcd +abc+ ab+a = 5135
a x 1000+b x100+ c x 10 + d +a x100 +b x 10 +c +a x10 +b +a = 5315
a x 1111+b x 111+c x11 +d = 5315
Số dư r
Như vậy 5315 : 1111 = a ( dư : b x 111+c x11 +d )
5315 : 1111 = 4 ( dư : 871)
a = 4
Tương tự: 871 = b x 111+c x11 +d
871 : 111 = 7 ( dư : 94)
b = 7
Tương tự: 94 = c x11 +d
94 : 11 = 8 (dư : 6)
C = 8 và d = 6
Vậy số cần tìm: abcd = 4786
abcd + abc + ab + a = 5315
5000 + 300 + 10 + 5 = 5315