Cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+d}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)=\(\frac{1}{90}\)
tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho:a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 1 : Cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S = \(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho \(a+b+c=2007\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2017 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a+b+c=2016 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 1 : Cho \(a+b+c=2007\)và\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+C}+\frac{b}{c+a}+\frac{c}{a+b}\)
Bài 2 : Cho \(abc\ne0v\text{à}\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 3 : Cho \(a+b+c\ne0\)
Thoả mãn : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)Tính \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Cho a+b+c=2007 và \(\frac{1}{a+b}\)+\(\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\).tính giá trị biểu thức sau:S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)