a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a-\frac{a^2}{a+b}+b-\frac{b^2}{b+c}+c-\frac{c^2}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\Leftrightarrow a^2\left(a+b\right)\left(a+c\right)+b^2\left(b+a\right)\left(b+c\right)+c^2\left(c+a\right)\left(c+b\right)\ge a^2\left(a+c\right)\left(b+c\right)+b^2\left(b+a\right)\left(c+a\right)+c^2\left(c+b\right)\left(a+b\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2c^2+a^2b^2+b^2c^2\left(lđ\right)\)
\(\Leftrightarrow\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c\)
cho a, b, c > 0 cmr a^2/(b^2+c^2) + b^2/(c^2+a^2) + c^2/(a^2+b^2) >= a/(b+c) + b/(c+a) + c/(a+b)
a^2/(b-c)^2 + b^2/(a-c)^2 + c^2/(b-a)^2>=2
(a+b/a-b)^2+(b+c/b-c)^2+(c+a/c-a)^2>=2
Cho a, b, c # 0 thỏa mãn: a^2/b^2 + b^2/c^2 + c^2/a^2 = a/c + c/b + b/a và a+b+c=1. Tìm a, b, c
cho a,b,c thỏa mãn: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
thì \(|a|=|b|=|c|\)
Cho a, b, c>0. Chứng minh:
a) a(b^2+bc+c^2)+b(c^2+ca+a^2)+c(a^2+ab+b^2)=<(1/3).(a+b+c)^3
b) a^3/(b^2+bc+c^2)+b^3/(a^2+ca+c^2)+c^3/(a^2=ab+b^2)>=(a+b+c)/3
Cho a, b, c \(\ne0\) và a+b+c=0. Tính :
A= \(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
cho a b c 0 và a^2+b^2+c^2=3 tìm GTNN của P= (a^2+b^2)/(a+b) +(b^2+c^2)/(b+c)+(c^2+a^2)/(a+c)