Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Nguyên Xanh

a,b,c>0 và a+b+c=1

Tìm min

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{a^2+ac+c^2}\)

Trần Hữu Ngọc Minh
11 tháng 12 2017 lúc 0:53

bài này easy thôi:

Áp dụng BĐT schwarz ta có:

\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)

Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)

nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)

Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)

Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)

Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)


Các câu hỏi tương tự
Lê Thành An
Xem chi tiết
Kim Taehyung
Xem chi tiết
Cuồng Song Joong Ki
Xem chi tiết
Tiến Dũng Trương
Xem chi tiết
Sông Ngân
Xem chi tiết
nana
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
An Vy
Xem chi tiết
Dung Đặng Phương
Xem chi tiết