a) Cho a,b,c là các số thực thỏa mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\) . Tính giá trị của biểu thức \(A=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
b) Rút gọn biểu thức : \(\frac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Nhờ các bn giải dùm !!!
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
TÍNH GIÁ TRỊ BIỂU THỨC
Cho abc = 1 và a + b + c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tính P = \(\left(a^{29}-1\right)\left(b^3-1\right)\left(c^{2018}-1\right)\)
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)tính gt bt \(a^{2018}+b^{2018}+c^{2018}\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Cho a,b,c là các số dương thỏa mãn \(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)
Tìm giá trị nhỏ nhất của biêu thức \(P=abc\)
Cho ba số thực a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c =1. Tính giá trị của biểu thức a^2018+b^2018+c^2018