Cho a,b,c là các số hữu tỉ sao cho \(a+b\sqrt{2}+c\sqrt{3}=0\). CHứng minh rằng a = b = c = 0
Cho `a, b, c` là các số hữu tỉ thỏa mãn `a sqrt 21 + b sqrt 5 + c sqrt 2023 =0`
Chứng minh rằng `a = b = c = 0`.
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho 2 số hữu tỉ a, b khác nhau và khác 0. Chứng minh rằng số \(A=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a-b\right)^2}}\) là số hữu tỷ
Cho a,b,c là các số hữu tỉ khác 0 và a =b +c
Chứng minh rằng : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 và a =b +c
Chứng minh rằng : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là một số hữu tỉ
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
Chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Cho a, b, c, d là các số hữu tỉ thỏa mãn a+b+c+d=0. Chứng minh rằng \(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\)là một số hữu tỉ
Cho a, b, c, d là các số hữu tỉ và a+b+c+d=0
Chứng minh rằng:
\(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\) là số hữu tỉ