Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
Cho tỉ lệ thức a/b. Với b/d khác +- 3/2
Cm : 1) 2a + 3c/2b + 3d = 2a - 3c /2b - 3d
2) a^2 + c^2/b^2+d^2
Cho tỉ lệ thức a/b. Với b/d khác +- 3/2
Cm : 1) 2a + 3c/2b + 3d = 2a - 3c /2b - 3d
2) a^2 + c^2/b^2+d^2
cho a b c là các số thỏa mãn điều kiện 2a-b/a+b=b-c+a/2a-b=2/3
Cho tỉ lệ thức a/b =c/d Chứng minh rằng:
a)a-b/a = c-d/c
b)a+b/a-b=c+d/c-d
c)(a-b/c-d)2 = ab/cd
d)(a+b/c+d)3 = 33-b3/c3-d3
e)2a+3b/2a-3b = 2c+3d/2c-3d
g)ab/cd = a2-b2/c2-d2
cho 2a+b=5 và 2c+b=-5 tìm A=(2+2a/b)(3+3b/c)(4+4c/a)
Bài 1: Tính giá trị của biểu thức:
a) A = x3 + 12x2y + 48xy2 - 64y3 biết x - y = 1 và 3x = 2y.
b) B = 2a - 3b/3b - 2a biết 6a = 5b.
c) C = 2a + b/a + 124 - a + 2b/b + 124 biết a + b = 124; a,b khác -124.
d) D = |x - 2| + x - y/x + y biết |x - 2| + (y - 1)2 = 0.
Cho a/b=c/d(b;d khác 0) chứng minh rằng
1.a/(a+b) = c /(c+d)
2,(a-b)/ b = (c-d) / d
3.(2a+b)/(2a-b) = (2c+d) / (2c-d)