\(a,4x-12=0\\ \Leftrightarrow x=3\\ b,x\left(x+1\right)-\left(x+2\right)\left(x-3\right)=7\\ \Leftrightarrow\left(x^2+x\right)-\left(x^2-x-6\right)-7=0\\ \Leftrightarrow x^2+x-x^2+x+6-7=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-4x+3-x^2}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow-4x+3=0\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)
a, \(4x=12\Leftrightarrow x=3\)
b, \(x^2+x-x^2+x+6=7\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)
c, đk : x khác -1 ; 1
\(\Rightarrow\left(x-3\right)\left(x-1\right)=x^2\Leftrightarrow x^2-4x+3=x^2\Leftrightarrow-4x+3=0\Leftrightarrow x=\dfrac{3}{4}\)
a.
`4x-12=0`
`<=> 4x=12`
`<=> x= 3`
b.
`x(x+1)-(x+2)(x-3)=7`
`<=> (x^2+x)-(x^2-x-6)-7=0`
`<=> x^2+x+x^2+x+6-7=0`
`<=> 2x-1=0`
`<=> x= 1/2`
c.
`(x-3)/(x+1)= (x^2)/(x^2-1)` `(đkxđ:` \(\ne\) `+-1`
`<=> ((x-3)(x-1))/((x-1)(x+1)) - (x^2)/((x-1)(x+1)) = 0`
`<=> (x^2-4x+3-x^2)/((x-1)(x+1))=0`
`=> x^2-4x+3-x^2=0`
`<=> -4x+3=0`
`<=> x=3/4` `(tmđk)`