d) \(\dfrac{x+1}{x-1}-\dfrac{x+2}{x+3}+\dfrac{4}{x^2+2x-3}=0\) (ĐKXĐ: \(x\ne1;-3\))
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)+4}{\left(x+3\right)\left(x-1\right)}=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)+4=0\)
\(\Leftrightarrow x^2+4x+3-x^2-x+2+4=0\)
\(\Leftrightarrow3x+9=0\Leftrightarrow x=-3\left(loại\right)\)
vậy phương trình đã cho vô nghiệm
c)\(\dfrac{2}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{x}{x^2+x+1}\) (ĐKXĐ: \(x\ne1\))
\(\Leftrightarrow\dfrac{2\left(x^2+x+1\right)-3x^2}{x^3-1}=\dfrac{x\left(x-1\right)}{x^3-1}\)
\(\Rightarrow2x^2+2x+2-3x^2=x^2-x\)
\(-2x^2+3x+2=0\)
\(\left(x-2\right)\left(-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\\-2x-1=0\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
vậy tập nghiệm của phương trình là S={2;-0,5)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)};ĐKXĐ:x\ne\left\{0;2\right\}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
=>x2+2x-x+2=2<=>x2+x=2-2<=>x(x+1)=0
=>\(\left\{{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy tập nghiệm của PT là S={-1}