\(85=17.5\)
Ta có:
\(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)
\(=4^0+4^1+4^2\left(4^0+4^1\right)+...+4^{96}\left(4^0+4^1\right)\)
\(=\left(4^0+4^1\right)\left(1+4^2+...+4^{96}\right)\)
\(a=5\left(1+4^2+...+4^{96}\right)\)nên \(a\) chia hết cho \(5\)
Lại có: \(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)
\(=4^0+4^2+4^1\left(4^0+4^2\right)+4^4\left(4^0+4^2\right)+4^5\left(4^0+4^2\right)+...+4^{94}\left(4^0+4^2\right)+4^{95}\left(4^0+4^2\right)\)
\(a=17\left(1+4^1+4^4+4^5+...+4^{94}+4^{95}\right)\)nên \(a\) chia hết cho \(17\)
Mà \(\left(5;17\right)=1\)
Vậy, ......