\( A=\frac{3^3}{6\cdot11}+\frac{3^3}{11\cdot16}+\frac{3^3}{16\cdot21}+....+\frac{3^3}{91\cdot96}\)
\(A=\frac{3^3}{5}\cdot\left(\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{91}-\frac{1}{96}\right)\)
\(A=\frac{27}{5}\cdot\left(\frac{1}{6}-\frac{1}{96}\right)\)
\(A=\frac{27}{5}\cdot\frac{5}{32}=\frac{27}{32}\)