Cho A=1-3+3^2-3^3+...+3^98-3^99
a,Tính A
b,Chứng tỏ A chia hết cho -20
c,Chứng tỏ 3^100 chia 4 dư 1
1.Tính: S=1*2+2*3+3*4+...+99*100
2.Chứng tỏ: 9n+1 không chia hết cho 100
cho A= 3\(^2\)-3\(^3\)+3\(^4\)-3\(^5\)+...-3\(^{99}\)+3\(^{100}\)+2013
chứng tỏ A chia hết cho 3 ,nhưng A không chia hết cho 9
cho A=3\(^2\)- 3\(^3\)+3\(^4\)-3\(^5\)+...-3\(^{99}\)+3\(^{100}\)+2013
chứng tỏ A chia hết cho 3 , nhưng A không chia hết cho 9
Cho A = 1 + 3 + 32 + 33 + 34 + ... + 399 + 3100 + 3101 + 3102. Chứng tỏ rằng A không phải là số chính phương
cho A= 3\(^2\)-3\(^3\)+3\(^4\)-3\(^5\)+...-3\(^{99}\)+3\(^{100}\)+2013
chứng tỏ A chia hết cho 3, nhưng A không chia hết cho 9
ai giúp mình vs
a ) Cho S = 1-3+32-33+34-35+...+398-399 . Tính S từ đó suy ra 3100 chia 4 dư 1 .
b) Viết liên tiếp các số 1,2,3,...,99 ta được một số rất lớn :
A = 1234567891112...979899 .Hãy chứng tỏ A chia hết cho 9 .
1,Tính :
1\(^2\) - 2\(^2\) + 3\(^2\) - 4\(^2\) + ... + 99\(^2\) - 100\(^2\) + 101\(^2\)
2,a) Chứng tỏ rằng : Tổng của năm số nguyên liên tiếp chia hết cho 5
b) Tổng của n số nguyên lẻ liên tiếp chia hết cho n
a)Cho A=3+32+33+......+39+310 chứng minh A chia hết cho 4
b)Chứng tỏ rằng H chia hết cho 155.Biết H=2+22+23+24+.........+299+2100
Làm ơn giúp mình trong tối nay nhé