\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x\left(1+2^3\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16=2^4\)
\(\Rightarrow x=4\)
b) \(3^{x-1}=\frac{1}{243}=\frac{1}{3^5}\)
\(\Leftrightarrow3^{-5}=\frac{1}{243}\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-4\)
a) 2^x + 2^x+3 = 144
2^x . (1 + 2^3) = 144
2^x . 9 = 144
2^x = 144 : 9
2^x = 16
2^x = 2^4
Vậy x = 4
\(2^x+2^{x+3}=144\)
\(\Leftrightarrow\)2x+2x.23=144
\(\Leftrightarrow\)2x.(1+8)=144
\(\Leftrightarrow\)2x.9=144
\(\Leftrightarrow\)2x=144=24
\(\Rightarrow\)x=4.
3x-1=\(\frac{1}{243}\)
\(\Leftrightarrow\)3x:3=\(\frac{1}{243}\)
\(\Leftrightarrow\)3X=\(\frac{1}{81}\)=3-4.
\(\Rightarrow\)x=-4.