Chứng minh:
a) (a+b+c)^2+(a+b-c)^2+(a-b+c)^2+(b+c-a)^2=4(a^2+b^2+c^2)
b) (ab+bc+ca)^2+(a^2-bc)+(b^2-ca)+(c^2-ab)=(a^2+b^2+c^2)^2
chứng minh : a^2+b^2+c^2-ab-b-ca)(a+b+c)= a(a^2-bc)+b(b^2-ca)+c(c^2-ab)
cho a,b,c >0 thoa man a+b+c=3.chung minh (a^2+bc)/(b+ca) + (b^2+ca)/(c+ab) + (c^2+ab)/(a+bc) ≥ 3
Cho a;b;c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng:
a) ab+ac+bc ≤ a^2+b^2+c^2 < 2(ab+ac+bc)
b) ab+ac+bc > (a^2+b^2+c^2)/2
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
cho a+b+c=1 chung minh (a+bc)(b+ac)(c+ab)=(a+b)^2(a+c)^2(b+c)^2
Cho a,b,c là các số dương thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng a/(a^2-bc+1) +b/(b^2-ac+1) + c/(c^2-ab+1) > 1/(a+b+c)
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
a^2+b^2+c^2=ab+bc+ca.Chứng minh a=b=c
cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c