1) A = (3x - 1) . (4x + 2)
Tìm x để A = 0 ; A > 0 ; A < 0 (=2 cách)
Bài 1 : Cho A = x ( x - 1/2 ). Tìm x để :
a) A = 0
b) A > 0
c) A < 0
Bài 2 : Tìm MinA = 1 + | x - 1/2 |
Tìm MaxB = - | x - 2 | - 4
Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
sắp xếp theo thứ tự tăng dần :
a) 2100 ; 375 ; 550
b) 0; a; a2 (a < 0)
c) 0 ; 1 ; a ; a2 (với 0 < a < 1)
xác định dấu a b
a) a^2n+1.b^202<0 và b^3+a^2
b)a-b^2-1>0 và a^2014:b^5>0
1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
CMR:
a) a^2+b^2>=2ab
b) Cho A = (a+1)(b+1) trong đó ab=1 (a>0;b>0) CMR : A>=4
Cho đa thức A(\(x\))=a\(x\)\(^2\)+b\(x\)+c (a,b,c là các hệ số ;\(x\) là biến)
a)Hãy tính A(-1),biết a+c=b-8
b)Tính a,b,c,biết A(0)=4;A(1)=9 và A(2)=14
c)Biết 5a+b+2c=0.CM A(2)xA(-1)\(\le\)0
giúp mình với khó quá!!!
Cho đa thức: p(x)=ax^2+bx+c(a,b,c#0). Cho biết 2a+3b+6c=0
a) Tính a,b,c theo p(0), P(1/2), P(1)
b) CMR: p(0), p(1/2), p(1) không thể cùng âm hoặc cùng dương.