Ta có: 2000/2001>1/2 ; 2001/2002>1/2
=>A=1/2+1/2=1=>A>1
B=2000+2001/2001+2002=4001/4003<1
A>1;B<1
=>A>B
Vậy A>B
$B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}$B=20002001+2002 +20012001−2002
Vì:
Ta có : \(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì : \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
Ta thấy 2000/2001=2000/2001
Mà 2001/2000>2001/2002
=)A=2000/2001+2001/2002>B=2000/2001+2001/2002
Vậy A>B
_Con giúp rồi=)))k đi ạ=))))