ptđttnt : \(a^2+2a\left(3b+1\right)+\left(3b+1\right)^2=\left(a+3b+1\right)^2\)
rút gọn : \(=a^2+6ab+2a+9b^2+6b+1\)
bài này là phân tích đa thức thành nhân tử dạng áp dụng hàng đẳng thức
ptđttnt : \(a^2+2a\left(3b+1\right)+\left(3b+1\right)^2=\left(a+3b+1\right)^2\)
rút gọn : \(=a^2+6ab+2a+9b^2+6b+1\)
bài này là phân tích đa thức thành nhân tử dạng áp dụng hàng đẳng thức
1.tìm x,y biết x^2 +3y và y^2 +3x là số chính phương.
2. cho 2a^2 +a = 3b^2 +b. cmr: 2a +3b +1 là số chính phương
Tính giá trị biểu thức:
a) M = (7 – m)( m 2 + 7m + 49) – (64 – m 3 ) tại m = 2017;
b*) N = 8 a 3 – 27 b 3 biết ab = 12 và 2a – 3b = 5;
c) K = a 3 + b 3 + 6 a 2 b 2 (a + b) + 3ab( a 2 + b 2 ) biết a + b = 1.
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
Cho a, b≥ 0 thỏa mãn: a2+ b2 ≤ 2.
Tìm giá trị lớn nhất của M= a. √(3a(a+2b)) + b. √(3b(b+2a))
(2a-3b)(4a-b)-(a^2-b^2)-(3b-2a)^2
Thực hiện nhanh các phép chia:
a) ( a 2 - 6ab + 9 b 2 ) : (a - 3b);
b) ( a 3 -9 a 2 b + 27a b 2 - 27 b 3 ) : ( 3 b - a ) 2 .
Phân tích đa thức thành nhân tử
1/ (a-3b)(a+3b)+(a-4b)(2b+3a)+(3b-a)(2a-b)
2/ (x-2y)(x+2y)+(2y-x)(3y-2x)+(y-x)2
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Cho a, b, c thỏa \(\frac{a}{2a+3b+4c}+\frac{3b}{6b+4c+a}+\frac{4c}{8c+a+3b}=\frac{3}{4}.\)
Chứng minh rằng: \(\frac{a^2}{2a+3b+4c}+\frac{9b^2}{6b+4c+a}+\frac{16c^2}{8c+a+3b}=\frac{a+3b+4c}{4}\)