=>2A = 2+1+1/2+1/22+...+1/22011
=> 2A-A = (2+1+1/2+1/22+...+1/22011)-(1+1/2+...+1/22012) = 2-1/22012
A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}\)
2A=\(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2011}}\)
2A-A=\(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2011}}\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
A=\(2-\frac{1}{2^{2012}}\)