\(a,\dfrac{1}{4}-\left(2x+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow\left(2x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-\dfrac{1}{2}\\2x=-\dfrac{1}{2}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\) \(b,\dfrac{1}{2}x+\dfrac{2}{3}x-1=-3\dfrac{1}{3}\\ \Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=-\dfrac{10}{3}+1\\ \Leftrightarrow\left(\dfrac{3+4}{6}\right)x=\dfrac{-10}{3}+\dfrac{3}{3}\\ \Leftrightarrow\dfrac{7}{6}x=\dfrac{-7}{3}\\ \Leftrightarrow x=\left(-\dfrac{7}{3}\right):\dfrac{7}{6}\\ \Leftrightarrow x=-2\)
Vậy \(x=0;x=-\dfrac{1}{2}\) Vậy \(x=-2\)
\(c,\dfrac{x-12}{4}=\dfrac{1}{2}\\ \Leftrightarrow2.\left(x-12\right)=4\\ \Leftrightarrow2x-24=4\\ \Leftrightarrow2x=24+2\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=26:2=13\)
Vậy \(x=13\)