\(\frac{1}{2}\)+ \(\frac{1}{6}\) + \(\frac{1}{12}\)+ \(\frac{1}{20}\)+ \(\frac{1}{42}\)= \(\frac{173}{210}\)
Sửa đề :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(A=1-\frac{1}{7}=\frac{6}{7}\)