a,
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x.\left(x+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\times\frac{x+1}{x+2}\)
\(=\frac{2x+2}{x+2}\)
Hơ hơ =v
Làm đại phần a đúng sai mặc kệ ~~
a,
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\left(x+2\right)}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\left(x+2\right)}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{x+2}\right)\)
\(=\frac{1}{2}\cdot\frac{x+1}{x+2}\)
\(=\frac{2x+2}{x+2}\)
b,
x = 1.2 + 2.3 + 3.4 + ....+ 89.90
3x = 1.2.3 + 2.3.3 + 3.4.3 + .... + 89.90
3x = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 89.90.(91 - 88)
3x = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 89.90.91 - 88.89.90
3x = 89.90.91
x = \(\frac{89\cdot90\cdot91}{3}=242970\)
a) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}\)
\(\Rightarrow2A=(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+...+(\frac{1}{x}-\frac{1}{x+2})\)
\(\Rightarrow A=1-\frac{1}{x+2}=\frac{x+1}{x+2}\)
b)\(x=1.2+2.3+3.4+...+89.90\)
\(\Rightarrow3x=1.2.(3-0)+2.3.(4-1)+...+89.98.(100-88)\)
\(\Rightarrow3x=1.2.3+2.3.4-1.2.3+...+89.90.100-88.89.90\)
\(\Rightarrow3x=89.90.100=872200\)
\(\Rightarrow x=\frac{872200}{3}\)