(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
(11^2n-2^6n)=121^n-64^n chắc chắn chia hết cho 121-64=57 (1)
vì n là số tự nhiên ko chia hết cho 5
suy ra n = 1;2;3;4;6...
suy ra n^4 - 1 chắc chắn chia hết cho 5 (2)
từ 1 va 2 ta co dpcm (CHO MÌNH CÁI ĐÚNG NHA)
CMR: Với mọi n thuộc Z, ta có:
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
1> Tìm x
a) (3x - 1)^2 - (5x-5)^2 = 0
2> CMR vs mọi stn n thì
n^2(n+1) + 2n(n+1) chia hết cho 6
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
CMR:với mọi số TN n :
a) 5n+3-3*5n+1+26n+3chia hết cho 59
b) 8*52n+11*6nchia hết cho 19
CMR với mọi số tự nhiên n:
a) n2+8n+17 ko chia hết cho (N+4)
b)n2+7n-40 ko chia hết cho 121
c)n3+6n2+11n+7 ko chia hết cho ((n+1):(n+2)) và (n+3)
CMR 3^2n+2 + 2^6n+1 chia hết cho 11
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1)với n thuộc số tự nhiên. cmr: 20n+16n-3n-1 chia hết cho 323
Bài 2) cmr với mọi n thì:
a)11(n+2)+2(2n+1) chia hết cho 133
b)5(n+2)+2.6n chia hết cho 19
c)7.52n+12. 6n chia hết cho 19
bài 3)tìm n sao cho
a)3(2n+3)+2(4n+1) chia hết cho 25
b)5n-2n chia hết cho 9
Chứng minh
a,(n2+3n-1)(n+2)-n3+2.Chia hết cho 5.
b,(6n+1)(n+5)-(3n.5)(2n-1).Chia hết cho 2.