Ta có: \(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
Ta thấy \(1>\frac{1}{2}\) ; \(\frac{1}{3}>\frac{1}{4}\) ; ... ; \(\frac{1}{4041}>\frac{1}{4042}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}< 1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1\)
\(\Rightarrow1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1+1< 1+\frac{2021}{2020}=1\frac{2021}{2020}\)
\(\Rightarrow\frac{A}{B}< 1\frac{2021}{2020}\)