2A \(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=2-\frac{1}{2^{2012}}\Rightarrow A=2-\frac{1}{2^{2012}}\)
ĐÚNG NHÉ
A=\(1+\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2012}}\)
2A=2+1+\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2011}}\)
2A-A=\(\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)- \(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
A= 2-\(\frac{1}{2^{2012}}\)
Vậy biểu thức \(1+\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2012}}\) rút gọn thành 2 - \(\frac{1}{2^{2012}}\)