Tính:
A=\(\left(1-\frac{2}{3}+\frac{4}{3}\right)-\left(\frac{4}{5}-1\right)+\left(\frac{7}{5}+2\right)\)
B=\(\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
C=\(\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right)\)\(.\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{11}{12}\right)\)
D=\(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{-5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{4}{3}}\)
\(A=\frac{\frac{1}{2}-\left|\frac{2}{3}+\frac{3}{4}\right|}{\left|\frac{1}{2}-\frac{2}{3}\right|+\frac{3}{4}}\)
\(B=\frac{\frac{2}{3}:\left|\frac{3}{4}-\frac{5}{6}\right|}{\left|\frac{2}{3}-\frac{3}{4}\right|:\left(\frac{1}{2}+\frac{2}{3}\right)}\)
Tính giá trị của biểu thức:
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(S=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{100}\right)\)
\(D=\left(1-\frac{1}{17}\right)\left(1-\frac{2}{17}\right)\left(1-\frac{3}{17}\right)...\left(1-\frac{27}{17}\right)\)
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
Tìm x thuộc Z, biết:
\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)
Tính:
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)...\left(1-\frac{4020}{2010}\right)\)
\(B=3+7+13+21+31+43+57+...+9901\)
\(C=\left(1-\frac{4}{1^2}\right)\left(1-\frac{4}{3^2}\right)\left(1-\frac{4}{5^2}\right)...\left(1-\frac{4}{2015^2}\right)\)
\(D=1-\frac{1}{1+2}-\frac{1}{1+2+3}-\frac{1}{1+2+3+4}-...-\frac{1}{1+2+3+4+...+100}\)
\(E=1+2+3+4+5+6+...+1000000\)
Giải giúp tớ với nhé! Ai giải đúng mình sẽ tick cho 3 cái.
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Đề bài: Bỏ dấu ngoặc rồi nhóm các số hạng thích hợp
\(A=\left(-7+\frac{3}{4}-\frac{1}{3}\right)-\left(6-\frac{5}{4}+\frac{4}{3}\right)-\left(3+\frac{7}{4}-\frac{5}{3}\right)\)
\(B=\left(6+\frac{2}{3}-\frac{1}{2}\right)-\left(5-\frac{5}{3}+\frac{3}{2}\right)-\left(3+\frac{7}{3}-\frac{5}{2}\right)\)
Tính: \(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)\left(1-\frac{4}{2010}\right)...\left(1-\frac{4020}{2010}\right)\)