\(A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{900}\right)\)
\(A=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{899}{900}\)
\(A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)...\left(29\cdot31\right)}{\left(2\cdot2\right)\left(3\cdot3\right)...\left(30\cdot30\right)}\)
\(A=\frac{\left(1\cdot2\cdot..\cdot29\right)\left(3\cdot4\cdot...\cdot31\right)}{\left(2\cdot3\cdot...\cdot30\right)\left(2\cdot3\cdot...\cdot30\right)}\)
\(A=\frac{1\cdot31}{30\cdot2}\)
\(A=\frac{31}{60}\)