a/ \(x^3+1-x^2-x=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)\left(x-1\right)^2\)
b/ \(x^4-1-3\left(x^2+1\right)=\left(x^2+1\right)\left(x^2-1\right)-3\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2-4\right)=\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)
c/ \(x^2+y^2-2xy-4z^2=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
d/ \(x^2-4x+4-\left(y^2+6y+9\right)\)
\(=\left(x-2\right)^2-\left(y+3\right)^2\)
\(=\left(x+y+1\right)\left(x-y-5\right)\)
e/\(\left(x^2-2x+1\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-2x+1-y^2\right)\left[\left(x^2-2x+1\right)^2+y^4+\left(x-1\right)^2y^2\right]\)
\(=\left[\left(x-1\right)^2-y^2\right]\left[\left(x-1\right)^4+y^4+2\left(x-1\right)^2y^2-\left(xy-y\right)^2\right]\)
\(=\left(x+y-1\right)\left(x-y-1\right)\left[\left(\left(x-1\right)^2+y^2\right)^2-\left(xy-y\right)^2\right]\)
\(=\left(x+y-1\right)\left(x-y-1\right)\left[\left(x-1\right)^2+y^2-xy+y\right]\left[\left(x-1\right)^2+y^2+xy-y\right]\)
f/ \(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+y^3+3xy\left(x+y\right)-\left(x^3+y^3\right)\)
\(=3xy\left(x+y\right)\)