a) x^2 - 3x = 0
x^2 = 3x
x^2 : x = 3x : x
x = 3
b) (x + 2)(2x - 1) - 3(2x - 1) = 0
(x + 2 - 3)(2x - 1) = 0
(x - 1)(2x - 1) = 0
Trường hợp1: x - 1= 0
x = 1
Trường hợp 2: 2x - 1 = 0
2x = 1
x = \(\dfrac{1}{2}\)
Vậy x ∈ {1;\(\dfrac{1}{2}\)}
c) x(x^2 - 2x + 1) + x(-x^2 + 3) = 0
x(x^2 - 2x + 1 -x^2 + 3) = 0
x(-2x + 4) = 0
Trường hợp 1: x = 0
Trường hợp 2: -2x + 4 = 0
-2x = -4
x=2
Vậy x ∈ {0;2}
a. ... \(\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
b. ... \(\Leftrightarrow2x^2+3x-2-6x+3=0\)
\(\Leftrightarrow2x^2-3x+1=0\) \(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c. ... \(\Leftrightarrow-2x^2+4x=0\Leftrightarrow-x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)