`a) A_(x) = (3x+2)(2x-1)`
`=6x^2 -3x + 4x -2`
`=6x^2 +x -2`
`b)` Ta có: `A_(x) = -2`
`=> 6x^2 +x -2=-2`
`=>6x^2 +x =0`
`=> x(6x+1)=0`
`Th_1: x=0`
`Th_2 : 6x+1 =0 => x= -1/6`
`=>S={0; -1/6}`
\(a,A\left(x\right)=\left(3x+2\right)\left(2x-1\right)=6x^2+4x-3x-2=6x^2+x-2\)
\(b,A\left(x\right)=-2\\\Leftrightarrow6x^2+x-2=-2\\ \Leftrightarrow6x^2+x=0\\ \Leftrightarrow x\left(6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(c,P\left(x\right)=5x.2x-x.\left(7x-5\right)+\left(12x^2+20x^3-8x^2\right):\left(-4x^2\right)=10x^2-7x^2+5x+\left(4x^2+20x^3\right):\left(-4x^2\right)=10x^2-7x^2+5x-1-5x=3x^2-1\)
\(\Rightarrow\) Sai đề