a) Tìm x,y,z biết : 2x = 5y ; 3y = 8z và x - 2y - 3z = 0,5
b) Tìm a,b,c biết 0,2 a = 0,3 b = 0,4 c và 2a + 3b - 5c = -1,8
c) Tìm a,b,c biết 2/3 a = 3/4 b = 5/6 c và 2b - a - c = -39
Mik cần gấp nhé! cô giáo mik mà thấy chưa xong là bố mẹ mik cho nghe mấy 'bài văn' (chắc các bn cũng hiểu)
làm luôn tik luôn!
a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)
=> x = -10/11 ; y = -4/11 ; z = -5/22
b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)
=> a = -6/5 ; b = -4/5 ; c = -3/5
c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)
=> a = -585/7 ; b = -780/7 ; c = -702/7
a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)
=> x = -2 ; y = -0,8 ; z = -0,3
b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)
=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)
=> a = -1,2 ; b = -0,8 ; c = -0,6
c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)
=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)
=> a = 1755 ; b = 1560 ; c = 1404
a, Theo bài ra ta có :
\(2x=5y;3y=8z\Leftrightarrow\frac{x}{5}=\frac{y}{2};\frac{y}{8}=\frac{z}{3}\)
\(\frac{x}{5}=\frac{y}{2}\Leftrightarrow\frac{x}{40}=\frac{y}{16}\)(*)
\(\frac{y}{8}=\frac{z}{3}\Leftrightarrow\frac{y}{16}=\frac{z}{6}\)(**)
Từ (*) ; (**) => \(\frac{x}{40}=\frac{y}{16}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{40}=\frac{y}{16}=\frac{z}{6}=\frac{x-2y-3z}{40-2.16-3.6}=\frac{0,5}{-10}\)
Tự thay vào tìm nhé
Ta có : \(2x=5y< =>\frac{x}{5}=\frac{y}{2}< =>\frac{x}{20}=\frac{y}{8}\)
\(3y=8z< =>\frac{y}{8}=\frac{z}{3}\)
Suy ra \(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)\(< =>\frac{x}{20}=\frac{2y}{16}=\frac{3x}{9}\)
Theo tính chất của dãy tỉ số = nhau :
\(\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{\frac{1}{2}}{-5}=-\frac{1}{10}\)
\(< =>\hept{\begin{cases}x=-2\\y=-0,8\\z=-0,3\end{cases}}\)