Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
wynn_1310

a) Tìm \(n\inℕ\) để:

\(\frac{8n+193}{4n+3}\)là một số tự nhiên.

b) Tìm \(n\inℕ\)thỏa: \(150< n< 170\)để phân số \(\frac{8n+193}{4n+3}\)rút gọn được.

Đoàn Đức Hà
18 tháng 6 2021 lúc 22:01

a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)

suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\)

\(\Rightarrow n\in\left\{2;46\right\}\).

Khách vãng lai đã xóa
Đoàn Đức Hà
18 tháng 6 2021 lúc 22:01

b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được. 

Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)

\(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)

\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)

ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).

\(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)

Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).

Khách vãng lai đã xóa