a)\(\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}=2\sqrt{\left(x+3\right)^2}\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}-2\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+2}+\sqrt{x-1}-2\sqrt{x+3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x+2}+\sqrt{x-1}=2\sqrt{x+3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x+1+2\sqrt{\left(x-1\right)\left(x+2\right)}=4\left(x+3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\2\sqrt{\left(x-1\right)\left(x+2\right)}=2x+11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\4\left(x-1\right)\left(x+2\right)=4x^2+44x+121\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\-40x=129\end{cases}}\Rightarrow x=-3\) (thỏa)
b)\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Đk:\(x\ge-\frac{1}{3}\)
\(pt\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1-\left(\frac{3}{5}x+1\right)=\sqrt{3x+1}-\left(\frac{3}{5}x+1\right)\)
\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}-\frac{3}{5}x=\frac{3x+1-\left(\frac{3}{5}x+1\right)^2}{\sqrt{3x+1}+\frac{3}{5}x+1}\)
\(\Leftrightarrow\frac{3x\left(5-\sqrt{3x+10}\right)}{5\sqrt{3x+10}}=\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}\)
\(\Leftrightarrow\frac{3x\cdot\frac{25-3x-10}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)
\(\Leftrightarrow\frac{3x\cdot\frac{-3\left(x-5\right)}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)
\(\Leftrightarrow x\left(x-5\right)\left(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}\right)=0\)
Dễ thấy: \(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}< 0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)