Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải Đăng

A = \(\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

Trần Thị Loan
18 tháng 8 2015 lúc 14:50

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=> A = 1

Vu Hoang Quan
21 tháng 3 2017 lúc 19:56

A=1 là đúng rồi


Các câu hỏi tương tự
key monstar
Xem chi tiết
oOo Phương Phù Cừ oOo
Xem chi tiết
Phan Hằng Giang
Xem chi tiết
☆☆《Thiên Phi 》☆☆
Xem chi tiết
Hoang Nghia Thien Dat
Xem chi tiết
Trương Phương Mai
Xem chi tiết
daohuyentrang
Xem chi tiết
Phí Quỳnh Anh
Xem chi tiết
nguyễn khánh huyền
Xem chi tiết