ban co biet giai ko ,, giup mk voi
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ban co biet giai ko ,, giup mk voi
CMR : Với a,b,c khác 0 thỏa mãn : \(\frac{a^2-bc}{a}+\frac{b^2-ac}{b}+\frac{c^2-ab}{c}=0\)thì a = b = c
cho biểu thức A=\(\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\) . a,b,c là 3 số khác nhau thỏa mãn a+b+c=0. Tính A
Cho 3 số a,b,c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\text{Tính: }P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}\)
Cho a,b,c >0 thỏa mãn a+b+c=1. CMR:
\(P=\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}+\sqrt{\frac{ab}{c+ab}}\le\frac{3}{2}\)
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
Cho a>0 b>0 c>0 thỏa mãn a+b+c=1 tính gt bt
\(P=\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ac\right)}{a+bc}}+\sqrt{\frac{\left(c+ab\right)\left(a+bc\right)}{b+ac}}\)
Cho a, b,c>0 thỏa mãn ab+bc+ac=3abc. Chứng minh :
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Cho a,b,c khác 0 thỏa mãn: \(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=0\). Tính
\(A=\frac{bc}{a^2}+\frac{ac}{8b^2}+\frac{ab}{27c^2}\)