Ta có :
\(B=\frac{5^{2009}+1}{5^{2010}+1}=\frac{\left(5^{2009}+1\right).10}{\left(5^{2010}+1\right).10}=\frac{5^{2010}+10}{5^{2011}+10}\)
Ta thấy :
\(5^{2010}=5^{2010};1< 10\Rightarrow5^{2010}+1< 5^{2010}+10\)
\(5^{2011}=5^{2011};1< 10\Rightarrow5^{2011}+1< 5^{2011}+10\)
Suy ra : \(A< B\)
Vậy \(A< B\)
\(A< 1\)
\(A< \frac{5^{2010}+1}{5^{2011}+1}\)
\(A< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)
\(A< \frac{5^{2010}+5}{5^{2011}+5}\)
\(A< \frac{5\left(5^{2009}+1\right)}{5\left(5^{2010}+1\right)}\)
\(A< \frac{5^{2009}+1}{5^{2010}+1}\)
\(A< B\)