Ta có : \(2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}=\frac{2009^{2010}+1+2008}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
\(2009B=\frac{2009^{2011}-4018}{2009^{2011}-2}=\frac{2009^{2011}-2-4016}{2009^{2011}-2}=1-\frac{4016}{2009^{2011}-2}\)
Mà \(1+\frac{2008}{2009^{2010}+1}>1-\frac{4016}{2009^{2011}-2}\)=> 2009A > 2009B => A > B