Tính \(\frac{A}{B}\)biết :
\(A=\frac{1}{2.32}+\frac{1}{3.33}+....+\frac{1}{n\left(n+30\right)}+....+\frac{1}{1973.2003}\)
\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+....+\frac{1}{n\left(n+1972\right)}+....+\frac{1}{31.2003}\)
cho: \(\frac{\alpha}{b}=\frac{b}{c}=\frac{c}{\eta}.cmr\left(\frac{\alpha+b+c}{b+c+\eta}\right)^3=\frac{\alpha}{\eta}\)
Tính P/Q biết:
P = 1/2.32 + 1/3.33 + ... + 1/n.(n+30) + ... + 1/1973.2003
Q = 1/2.1974 + 1/3.1975 + ... + 1/n.(n+1972) + ... + 1/31.2003
Tính \(\frac{A}{B}\)biết:
\(A=\frac{1}{2.32}+\frac{1}{3.33}+\frac{1}{4.34}+...+\frac{1}{1973.2003}\)
\(B=\frac{1}{2.1074}+\frac{1}{3.1075}+\frac{1}{4.1076}+...+\frac{1}{34.2003}\)
Tính A biết: \(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tính bằng cách hợp lí nhất
a) A = \(\frac{\left(1+17\right)\left(1+\frac{17}{2}\right)\left(1+\frac{17}{3}\right)...\left(1+\frac{17}{19}\right)}{\left(1+19\right)\left(1+\frac{19}{2}\right)\left(1+\frac{19}{3}\right)..\left(1+\frac{19}{17}\right)}\)
b) B = \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
Bài 2
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
b) \(B=\left(-1\frac{1}{2^2}\right)\left(-1\frac{1}{3^2}\right)\left(-1\frac{1}{4^2}\right)...\left(-1\frac{1}{2003^2}\right)\left(-1\frac{1}{2004^2}\right)\)
c) \(C=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\left(n\in N,n\ge2\right)\)
Tìm x biết : \(\left(\frac{1}{3}\right)^x\left(\frac{1}{9}\right)^x\left(\frac{1}{27}\right)^x\left(\frac{1}{81}\right)^x\left(\frac{1}{243}\right)^x=\left(-\frac{1}{3}\right)^{30}\)
tính :\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)