\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
Ta có : \(\frac{1}{1x3}+\frac{1}{3x5}+........+\frac{1}{99x100}\)
=> 2M = \(\left(\frac{2}{1x3}+\frac{2}{3x5}+......+\frac{2}{99x100}\right)\)
=> 2A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{100}\)
=> 2A = 1 - \(\frac{1}{100}\)
=> 2A = \(\frac{99}{100}\)
=> A = \(\frac{99}{100}:2\)
=> A = \(\frac{99}{200}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
Ủng hộ mk nha !! ^_^
\(Ta có : \(\frac{1}{1x3}+\frac{1}{3x5}+........+\frac{1}{99x100}\) => 2M = \(\left(\frac{2}{1x3}+\frac{2}{3x5}+......+\frac{2}{99x100}\right)\) => 2A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{100}\) => 2A = 1 - \(\frac{1}{100}\) => 2A = \(\frac{99}{100}\) => A = \(\frac{99}{100}:2\) => A = \(\frac{99}{200}\)\)