\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(=1-\frac{1}{2000}\)
\(=\frac{1999}{2000}\)
1/1.2+1/2.3+1/3.4+..+1/1999.2000
=1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/2000
=1-1/2000
a) \(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+...+\)\(\frac{1}{1999.2000}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(...+\)\(\frac{1}{1999}\)\(-\)\(\frac{1}{2000}\)
\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2000}\)
\(=\)\(\frac{1999}{2000}\)