Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Emily Rosabella

a) Chứng minh rằng: | A + B | ≤ | A | + | B |. Dấu “ = ” xảy ra khi nào?

b) Tìm giá trị nhỏ nhất của biểu thức sau: .M = \(\sqrt{x^2+4x+4}\) +\(\sqrt{x^2-6x+9}\)

c) Giải phương trình: \(\sqrt{4x^2+20x+25}\)\(\sqrt{x^2-8x+16}\)\(\sqrt{x^2+18x+81}\)

Hoàng Lê Bảo Ngọc
23 tháng 12 2016 lúc 19:31

a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)

\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)

Đẳng thức xảy ra khi \(A.B\ge0\)

b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)

Vậy minM = 5 tại \(-2\le x\le3\)

c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)

Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)

Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)

Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)


Các câu hỏi tương tự
CoAi ConanAi
Xem chi tiết
Khánh An Ngô
Xem chi tiết
Phạm Hùng Anh
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Triệu Nguyên Anh
Xem chi tiết
TRần tú Anh
Xem chi tiết
Lưu Thị Bằng
Xem chi tiết
Chau Pham
Xem chi tiết
Linhh Khánh
Xem chi tiết