Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
b)
B=1x2+2x3+3x4+...+99x100
1/B=1/(1x2)+1/(2x3)+1/(3x4)+...+1/(99x100)
1/B=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
1/B=1/1-1/100
1/B=99/100
vì 1/B=99/100=>99.B=100
B=100/99
Vậy B=100/99
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500
a) Ta có : A = 3 + 32 + 33 + 34 + ... + 399 + 3100
= (3 + 32) + (33 + 34) + ... + (399 + 3100)
= (3 + 32) + 32.(3 + 32) + .... + 398.(3 + 32)
= 12 + 32.12 + .... + 398.12
= 12.(1 + 32 + ... + 398) (1)
= 3.4.(1 + 32 + ... + 398) \(⋮\) 4
=> \(A⋮4\)
Từ (1) \(\Rightarrow A⋮12\)
b) B = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3B = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
= 1 x 2 x 3 + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + .... + 99 x 100 x (101 - 98)
= 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .... + 99 x 100 x 101 - 98 x 99 x 100
= 99 x 100 x 101 = 999 900
=> B = 333 300
c) Ta có : C = 12 + 22 + 32 + ... + 992 + 1002
= 1.1 + 2.2 + 3.3 + ... + 99.99 + 100.100
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + .... + 99.(100 - 1) + 100.(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 99.100 - 99 + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101) - (1 + 2 + 3 + 4 + ... + 99 + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3
= 1.2.3 + 2.3(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100 + 100.101.102 - 99.100.101
= 100.101.102
= 1 030 200
=> B = 343 400
Khi đó : C = B - (1 + 2 + 3 + 4 + ... + 99 + 100)
= 343 400 - [(100 - 1) : 1 + 1] . (100 + 1) : 2
= 343 400 - 100 . 101 : 2
= 343 400 + 5050
= 348 450
Vậy C = 348 500