a) \(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{4}{2}=2\)
A min = 2 khi a =b =1
b) x = 8 -2y => \(B=xy=\left(8-2y\right)y=-2y^2+8y-8+8=-2\left(y-2\right)^2+8\le8\)
B max = 8 khi y = 2 ; x = 4
a) \(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{4}{2}=2\)
A min = 2 khi a =b =1
b) x = 8 -2y => \(B=xy=\left(8-2y\right)y=-2y^2+8y-8+8=-2\left(y-2\right)^2+8\le8\)
B max = 8 khi y = 2 ; x = 4
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
a) Cho a+b=2. Tìm giá trị nhỏ nhất của A=a2 +b2
b) Cho x+2y=8. Tìm giá trị lớn nhất của B= xy
a, tìm GTLN A= x(5-3x)
b, cho x+y=7. tìm GTLN xy
c, tìm GTNN của F= x(x-3)(x-4)(x-7)
Cho hpt: \(\int^{x+y=a}_{x^2+y^2=6-a^2}\)
a)Giải HPT với a=2
b)Tìm GTNN và GTLN của F=xy+2.(x+y)
Luyện tập tiếp nhé?
a) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTLN của \(P=\sqrt{2x+yz}+\sqrt{2y+zx}+\sqrt{2z+xy}\)
b) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
c) Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Tìm GTNN của \(S=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Cho x>0: y> 0 và x+y=2012.
a) Tìm GTLN của A= 2x2 + 8xy+ 2y2 / x2 + 2xy+y2
b) Tìm GTNN của B= ( 1+2012/x)2 + ( 1+ 2012/y)2
Cho a^2+b^2+c^2=2 Tìm GTLN,GTNN của M=a+b+c-abc
1.Cho a, b, c>0 và a+b+c=1. Tìm GTLN của P=\(a+\sqrt{ab}+\sqrt[3]{abc}\)
2.Cho x, y>0 thỏa mãn:\(x^2+y^2=5\) Tìm GTNN của P=\(x^3+y^3\)
3. Cho x, y, z\(\ge\)0 và x+y+z=3. Tìm GTNN của P=\(x^4+2y^4+3z^4\)
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a-5b=12
Tìm GTLN của P=a.b