Cho 2 điểm A và B cùng nằm trong nửa mặt phẳng có bờ là đường thẳng xy. Tìm trên xy điểm M sao cho AM + BM bé nhất
Cho điểm A nằm trong góc nhọn xOy.
a) Tìm hai điểm M, N thuộc Ox và Oy sao cho AM + AN là nhỏ nhất.
b) Tìm hai điểm B, C thuộc Ox và Oy sao cho tam giác ABC có chu vi nhỏ nhất
cho điểm A nằm trong góc nhọn xOy,lấy trên mặt phẳng các điểm D và E sao cho Ox là đường trung trực của AD, Oy là đường trung trực của AE. Cho M thuộc Ox N thuộc Oy
a, CMR chu vi tam giác AMN = DM+MN+NE
b, Các điểm M,N nằm ở vị trí nào trên Ox, Oy thì chu vi tam giác AMN nhỏ nhất
Cho đường thẳng xy và hai điểm A, B nắm trên cùng một nửa mặt phẳng bờ là đường thẳng xy. Hãy tìm trên đường thẳng xy một điểm C sao cho chu vi tam giác ABC là nhỏ nhất?
cho 2 điểm A và B nằm trên hai nửa mặt phẳng đối nhau bờ là đường thẳng xy. Tìm trên xy điểm M sao cho góc xMA= góc yMB
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK.
a) Chỉ ra hai tam giác bằng nhau và chứng minh.
b) Chỉ ra các cạnh các góc tương ứng.
c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.
Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.
Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.
Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).
Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh
MN< hoặc = (AC+BD)/2
Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.
1)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC.
2) Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC, E là giao điểm của d với AC. Gọi K là một điểm bất kì thuộc d (K khác E). So sánh chu vi các tam giác AKB và AEB.
3) Cho điểm A nằm trong góc nhọn xOy. Vẽ điểm D đối xứng với A qua Ox. Vẽ điểm E đối xứng với A qua Oy. Gọi B và C theo thứ tự là giao điểm của DE với Ox và Oy. Chứng minh rằng tam giác ABC có chu vi nhỏ nhất trong các tam giác có một đỉnh là A, hai đỉnh kia nằm trên các tia Ox và Oy.
cho xOy = 40 độ . Lấy điểm A t nằm trên cùng nửa mặt phẳng có bờ là đường thẳng Ox chứa tia Oy sao cho At cắt tia Oy tại B và OAt = 100 độ . Gọi Am là tia phân giác của góc xAt.
a) Chứng minh rằng AM // Oy
b) Trên nửa mặt phẳng không chứa điểm A bờ là đường thẳng chứa tia Oy, vẽ tia Bn. Hỏi để Bn // Ox thì số đo góc OBn phải bằng bao nhiêu