Phân tích đa thức thành nhân tử:
A)(a+b)(b+c)(c-a)+(b+c)(c+a)(a-b)+(c+a)(a+b)(b-c)
B)(b+c)(c+a)(b-a)+(b+c)(a+b)(a-c)+(a-b)(b-c)(a-c)
C)(a-b)(b-c)(a-c)+(a+b)(c+a)(c-b)+(b+c)(c+a)(b-a)
D)(a-b)(b-c)(a-c)+(a+b)(b+c)(a-c)+(a+b)(a+c)(c-b)
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
cho a.b.c đôi một khác nhau cmr:
a.b-c/(a-b)(a-c)+c-a/(b-c)(b-a)+a-b/(c-a)(c-b)=2/a-b+2/b-c+2/c-a
b,(x-b)(x-c)/(a-b)(a-c)+(x-c)(x-a)/(b-c)(b-a)+(x-a)(x-b)/(c-a)(c-b)
TÍNH:\(S=\frac{a}{a+b+c}+\frac{a+b+c}{a}+\frac{b}{a+b+c}+\frac{a+b+c}{b}+\frac{c}{a+b+c}+\frac{a+b+c}{c}-\frac{a}{b}-\frac{a}{c}-\frac{b}{a}-\frac{b}{c}-\frac{c}{a}-\frac{c}{b}\)
M=a+b/a-b . b+c/b-c + b+c/b-c .c+a/c-a +c+a/c-a . a+b/a-c
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
a-b/(c-a)(c-b)+b-c/(a-c)(a-b)+c-a/(b-c)(b-a)= 2/a-b+2/b-c+2/c-a
rút gọn :
a ) 1/ a(a-b)(a-c) + 1/ b(b-c)(b-a) + 1/c(c-a)(c-b)
b) 1/ (a-b)(b-c) + 1/ (c-a)(c-b) + 1/(b-c)(b-a)
ptích => ntử :
Câu 1: a(b+c)^2((b-c)+B(c+a)^2(c-a)+c(a+b)^2(a+b);
Câu 2: a(b-c)^3+b(c-a)^3+c(a-b)^3
Câu 3 :a^2b^2(a-b)+b^2c^2(b-c)+c^2+a^2(c-a)
Câu 4: a(b^2+c^2)+(c^2+a^2)+c(a^2+b^2)-2abc-a^3-b^3-c^3
Câu 5: a^4(b-c)+b^4(c-a)+c^4(a-b)
cho a,b,c là 3 số thực khác nhau. Cmr: a+b/a-b . b+c/b-c + a+c/c-a . b+c/b-c + a+c/c-a . b+a/a-b=-1