lay 3-VT la xong ban ak,day la phuongphap dao dau ma
lay 3-VT la xong ban ak,day la phuongphap dao dau ma
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}\: }+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
Với a,b,c >0 . Cm
Cho a,b,c là các số dương. CMR \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)Mọi người giúp em với ạ!
Giả sử: \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ca}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{bc+a^2}{a+b}+\frac{ca+b^2}{b+c}+\frac{ab+c^2}{c+a}\ge a+b+c\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
a, b, c > 0; abc = 1. CM:\(\frac{ab}{a+b+ab}+\frac{bc}{b+c+bc}+\frac{ca}{c+a+ca}\le1\)
Cho a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). CMR: \(\sqrt{\frac{a}{a+bc}}+\sqrt{\frac{b}{b+ca}}+\sqrt{\frac{c}{c+ab}}\le\frac{3}{2}\)
Cho a, b, c > 0. Chứng minh:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{2}\left(a+b+c\right)\)
biết: \(ab+bc+ca=abc.CMR:\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+a\right)\left(b+c\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{4}\)