a) \(A=2^{100}-2^{99}-2^{98}-...-2^2-2^1\)( Có 2 câu nên mình tính nhanh luôn nhé )
\(\Leftrightarrow A=2^{100}-\left(2^1+2^2+2^3+...+2^{98}+2^{99}\right)\)
\(A=2^{100}-\left(2^{100}-2^1\right)=2^{100}-2^{100}+2=2\)
b) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{36.37.38}+\frac{1}{37.38.39}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{38-36}{36.37.38}+\frac{39-37}{37.38.39}\)
\(=\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}\right)+\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}\right)+...+\left(\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)
\(=\left(\frac{1}{2}-\frac{2}{3}\right)+\left(\frac{2}{3}-\frac{3}{4}\right)+\left(\frac{3}{4}-\frac{4}{5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}-\frac{2}{3}+\frac{2}{3}-\frac{3}{4}+\frac{3}{4}-\frac{4}{5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{2}-\frac{1}{38.39}=\frac{741}{1482}-\frac{1}{1482}=\frac{740}{1482}=\frac{370}{741}\)