\(A=6+3^2+3^3+...+3^{100}\)
\(A=3^2+3^2+3^3+...+3^{100}\)
\(3A=\left(3^2+3^2+3^3+...+3^{100}\right).3\)
\(3A=3^3+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^3+3^3+3^4+...+3^{101}\right)-\)\(\left(3^2+3^2+3^3+...+3^{100}\right)\)
\(2A=\left(27+3^3+...+3^{101}\right)\)
TỚI ĐÂY MÌNH BÓ TAY !!!
Ta có : \(A=6+3^2+3^3+...+3^{10}\)
\(\Rightarrow A-6=3^2+3^3+...+3^{10}\)
\(\Rightarrow3\left(A-6\right)=3^3+3^4+...+3^{11}\)
\(\Rightarrow3\left(A-6\right)-\left(A-6\right)=\left(3^3+3^4+...+3^{11}\right)-\left(3^2+3^3+...+3^{10}\right)\)
\(\Leftrightarrow2\left(A-6\right)=3^{11}-3^2\)
\(\Leftrightarrow2A-12=3^{11}-3^2\)
\(\Rightarrow2A=3^{11}-3^2+12\)
Đến đây thì sai đề